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High-fidelity all-optical control of quantum dot spins: Detailed study of the adiabatic approach
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Confined electron spins are preferred candidates for embodying quantum information in the solid state. A
popular idea is the use of optical excitation to achieve the “best of both worlds,” i.e., marrying the long spin
decoherence times with rapid gating. Here, we study an all-optical adiabatic approach to generating single
qubit phase gates. We find that such a gate can be extremely robust against the combined effect of all principal
sources of decoherence, with an achievable fidelity of 0.999 even at finite temperature. Crucially, this perfor-
mance can be obtained with only a small time cost: the adiabatic gate duration is within about an order of
magnitude of a simple dynamic implementation. An experimental verification of these predictions is immedi-

ately feasible with only modest resources.
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I. INTRODUCTION

Electron spins in quantum dots (QDs) are promising can-
didates for quantum computation due to their long intrinsic
decoherence times.! Optical control of such spins, via auxil-
iary exciton (electron-hole) states, offers the promise of fast
gating times. The “figure of merit,” i.e., the ratio of decoher-
ence time to gate time, would then be extremely high. This
exciting possibility has been discussed in several proposals
recently.8

However, direct exploitation of the excitonic degree of
freedom, which we term dynamic optical control, may ad-
versely affect the spin coherence: During the gate operation
the quantum information is partially carried by the excitons,
which are subjected to aggressive decoherence. It has been
suggested that adiabatic control could avoid this problem by
ensuring that the qubit remains encoded in low-lying states
throughout the process.>* In this paper, we present calcula-
tions for both forms of gate under the combined effect of the
principal decoherence mechanisms, photon emission from
excitonic recombination and acoustic phonon interaction. In
contrast to previous work,>* we derive a full master equation
(ME) solution for the gate dynamics that simultaneously in-
corporates all decoherence channels.

Our principal interest is in evaluating the performance of
the adiabatic approach, and the Markovian master equation
technique that we develop is tailored for this purpose. We
will show that, although the adiabaticity condition introduces
the possibility of Landau-Zener transitions, this does not sig-
nificantly impair gate performance. Error rates of less than
1073 can be achieved even in the presence of multiple deco-
herence channels. In order to provide a meaningful context
for these results, we will also consider the performance of a
simple dynamic approach in the same parameter regime, i.e.,
relatively weak driving. However, this form of gate is not the
primary focus of our study, and we will neglect more ad-
vanced dynamic models and techniques such as pulse
shaping,’ and also the effects of pure dephasing that may
become significant in the case of ultrafast addressing.!”

Our predictions for both the dynamic and adiabatic gates
can be tested immediately; experiments would only involve a
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single QD and one laser.!' Such a demonstration would pro-
vide an important step toward implementing more general
gates based on adiabatic approaches.”!>!3

II. MODEL

Consider a self-assembled QD that is doped such that one
excess electron, the spin of which is the qubit, permanently
occupies the lowest energy state of the conduction band. If
the dot is irradiated with o polarized laser light, only one of
the electron spin configurations is compatible with the cre-
ation of an additional exciton due to the Pauli blocking
effect>? (illustrated in Fig. 1). The resulting three particle
state is called a trion and denoted |X). In this case, the logical
|0) state (defined as spin down |])) is unaffected by the laser
pulse. Exploiting the selective coupling |1)(=|1)) to |X) thus
allows for exciton-mediated spin manipulation.

In a frame rotating with the laser frequency w;, and after
making a rotating wave approximation (RWA), we obtain the
Hamiltonian of such a QD in the basis {|0),]1),|X)} (i=1)

Q
Hg=A|X)(X| + 3(|1><X| +H.c), (1)

where H.c. denotes the Hermitian conjugate, A= wy—w; is
the detuning between w; and the exciton creation energy w,
and () is the laser-QD coupling strength.
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FIG. 1. (Color online) Pauli blocking effect: Heavy holes oc-
cupy the lowest energy valence band states with spin m,=*3/2,
whereas light holes have spin m,= = 1/2 at a slightly higher energy.
Therefore, o light cannot excite electron hole pairs if the qubit is
in the state |0) with m.=—1/2. On the other hand, if the qubit is in
the |1) configuration, the excitation is possible, leading to a three
particle trion |X) state.
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FIG. 2. (Color online) Energy of the dressed states, shown as a
function of the detuning A in arbitrary units. The |—) state tends to
[1), and |+) to |X), for a large positive detuning. At resonance,
A =0, the dressed states are an equal superposition of the bare basis
states. The decoupled |0) state is also shown, its energy remaining
constant. Adiabatic following: population in the |0) and |1} states
follows the respective instantaneous eigenstates if the mixing angle
6 changes sufficiently slowly. |0) is unaffected by the laser pulse,
but |1) goes into |—) and back. Due to the energy shift of the
|—) state, a dynamical phase accumulates relative to |0).

Hamiltonian (1) provides a valid description of the driven
QD, regardless of whether a classical laser field or a quantum
mechanical laser mode in a coherent state is assumed.'*
However, the eigenstates of the joint system in a fully quan-
tum mechanical treatment contain the photon number N of
the laser mode,'> giving rise to the following representation
in the so-called dressed basis:'*

|- )y =cos 6]1,N + 1) —sin 6|X,N), (2)

| +)y=sin 61,N + 1) + cos 0|X,N), (3)
0—1 t (Q) (4)
= 5 arctan| = J.

The states |~)y and |+)y are conveniently grouped and re-
ferred to as a manifold M(N). In this picture, there is a
ladder of manifolds, each manifold separated from its neigh-
bors by the energy of a laser photon w,.'* Henceforth, we
shall label the |- state simply as |—) whenever information
about the photon number in the laser mode is not needed.

Based on Hamiltonian (1), an R,(¢) gate (|0)—|0),[1)
—e'?|1)) can be performed in two different ways. First, a
resonant Rabi flop allows one to achieve any angle of rota-
tion provided control of the driving laser phase is possible.’
Second, slow switching of an off-resonance laser beam can
be used to achieve adiabatic following of instantaneous sys-
tem eigenstates. As depicted in Fig. 2, population intially in
[1) follows the |—) state as 6 goes from zero to some value
6,nar» @and returns back to |1) as @ goes back to zero. During
this process, the energy difference between |—) and |0),
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causes an accummulation of phase of |1) relative to |0). This
kind of adiabatic following can be achieved by using a laser
pulse with slowly changing Gaussian field amplitude
QO(t)=Qq exp[—(¢/ 7)*] with a constant detuning A.

II1. RADIATIVE DECAY

Excitonic lifetimes up to a nanosecond have been
reported.'® Therefore, the problem of spontaneous photon
emission has previously often been assumed to be insignifi-
cant compared with other decoherence channels.>* However,
to achieve adiabaticity, our quantum gate must be performed
slowly and the finite excitonic lifetime becomes a relevant
factor in limiting performance. Spontaneous emission then
causes qubit dephasing, although it does not cause qubit re-
laxation since |0) is always uncoupled to the photon emission
process.

Dynamic gates also suffer from such decoherence since
any population in the excited state is susceptible to radiative
decay at the rate of the inverse natural lifetime I'y. Let 2
denote the overall “number of expected decays” for a square
27 pulse that is defined by the integral of the excitonic popu-
lation over the pulse duration. For undamped, resonant Rabi
oscillations, the population of the excited state obeys
(X)X |)y=sin*(Q2/2¢), so that

T J ™ sinz(&>dt—£F (6)
=l 5 Jar=glor

I

In principle, a stronger driving reduces =. However, increas-
ing the pulse amplitude is technically demanding and can
lead to population leakage from the trion subspace.

In the adiabatic scheme, radiative transition rates between
dressed states [Eqgs. (2) and (3)] are required to describe
spontaneous photon emission processes. These are obtained
analogous to the case of an atom interacting with a laser
pulse.!* As can be seen in Fig. 3, the total decay rate I,, from
|—-) into the adjacent manifold is given by the sum of two
processes [—)y— =)y and |=)y—|+)y."*

I, =T, sin? cos? + 1 sin* §=T sin® 6. (7)

Obviously, I',, decreases as 6 gets smaller. On the other
hand, a smaller 6 entails a prolonged gating time. By using
Eq. (4) and performing a series expansion in {}/A around
QO /A=0, we obtain

r —&<9>2+(’)<Q>4 (8)
"4\ A A
A similar expansion for the energy shift E,, of the |—) state
yields
£u-2(2) of2) o
"4\ A A

The time required for an Ry(7r) operation is 7=/E,,. The
expected number of decays during the gate is simply the
product of time and decay rate, yielding
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FIG. 3. (Color online) Radiative decay from manifold M(N) to
M(N—-1). Left: The uncoupled basis. The energy between the two
states in each manifold is the detuning A, and the solid arrows
correspond to absorption and stimulated emission processes,
whereas the wavy arrows denote spontaneous emission. Right: Al-
lowed spontaneous emission transitions between the dressed states.
The energetic splitting in each manifold is the effective Rabi fre-
quency Q'=\A%?+Q? and the spacing between adjacent manifolds
is the laser frequency w;. The left emission process is at frequency
w;+()', the two center lines emit at the frequency of the laser, and
the right at w;—(}’; this is the Mollow triplet well known in quan-
tum optics (Ref. 17).

energy

Lo}
— =
=

aa
KI‘O. (10)
Hence, E decreases with increasing A at the cost a longer
gating duration 7. We verify this result in Fig. 4, which com-
pares Eq. (10) with a full numerical simulation, showing an
excellent agreement whenever A=2 (). We have checked
our results with an appropriate Markovian ME equation,'®
which reconfirms that further detuning the laser reduces ra-
diative decay in the adiabatic scheme, while it takes a stron-
ger coupling () to achieve the same for the dynamic gate.

IV. PHONON INTERACTIONS

Interactions with vibrational modes of the surrounding
lattice cause twofold decoherence. First, they dephase the
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FIG. 4. (Color online) Any significant population of the exci-
tonic state makes decay events inevitable. The expected number of
decays (for [,=0.01 ps~') during an adiabatic R,() gate is shown
as a function of A. We depict the analytical prediction (red) along
with full numerical solutions, for which () is given in meV. The
inset shows the corresponding pulse durations 7 in ps.
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qubit in a similar way to radiative decay, and second, they
can lead to gate failure through state relaxation. We focus on
deformation potential coupling to acoustic phonons as the
main phonon induced dephasing mechanism for slow exci-
tonic processes'>? since it dominates over the much weaker
piezoelectric coupling.?0?!

In addition to the electron spin qubit, the trion state |X)
also consists of a strongly bound exciton. Therefore, its in-
teraction with phonons is given by!'%20

H,,=|XXX| X gqlaq+Hec), (11)
q

where ag is the annihilation operator for a phonon with
wave vector ¢, and gq is an effective excitonic coupling
strength g, = (M;P[df(r)]—MZP[z,b}'(r)]).ZO The M"
=D,;|q|N7/2uVw, are the deformation potential coupling
strengths for electrons and holes,!” with wu being the mass
density, V the lattice volume, and D, the respective electron
and hole coupling constants. P[ /"] denotes the form factor
of the electron or hole wave function.

We proceed by transforming Eq. (11) into the diagonal
basis of Hg [Eq. (1)] and by then writing it in the interaction
picture with respect to both Hg and H B:Eqwqa*qaq, yielding

H)= >, (Pwre_i“”t+H.c)gq(aqe_i‘”q[+H.c.), (12)
o'.q

where ' €{0,A}, Py=cos’ 6+ ){+|+sin?> 8]-){—|, and
Py=-sin @ cos O-){+|. A=yQ>+A? is the energy difference
between the dressed states.

The ME is derived in the usual way?? by integrating the
von Neumann equation for the density matrix @ of the joint
system and tracing over the phonon modes. This results in an
integrodifferential equation for the qubit density matrix p:

p:-f dt’ tr,([H(0),[H/(1"),0(t)]]). (13)

0

The Born-Markov approximation is now performed, which
relies on two assumptions. First, there is no backaction from
the small system on the much larger bath, meaning the joint
density matrix factorizes at all times 0=p ® pp. Second, the
bath relaxation is assumed to be rapid and so we replace
p(t") by p(1), thereby neglecting any memory effects.?? Fur-
ther, we assume that system dynamics occurs on a time scale
much faster than the decoherence processes, J(A) <A, al-
lowing us to perform a RWA and leading to a ME in Lind-
blad form:?>23

p=J(A)([N(A) +11D[P\Jp+ N(A)D[Pp).  (14)

D[L]p=LpL"=1/2(L'Lp+pLTL) is the “dissipator” of the
ME, N(w)=[exp(w/kzT)—1]"" describes the thermal occupa-
tion of the phonon modes, and J(w) is the phonon spectral
density:

J(w) =272, g4/ 8w - wy). (15)
q
The Lindblad operator P, has been dropped because the

spectral density vanishes for w=0. Consequently, the ME in
the Born-Markov approximation provides a suitable descrip-
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FIG. 5. (Color online) Phonons affect dynamic and adiabatic
quantum operations differently. To characterize decoherence, we
present the purity of the system’s density matrix during an R ()
operation for deformation potential coupling at 7=5 K. The dy-
namic gate uses {1=0.1 meV and time is shown in units of 27/().
Adiabatic gates are performed with (y=1 meV and the units of A
are meV. We have scaled the time axis by dividing by 67 and adding
0.5 (thus mapping the actual integration interval from —=37 to 37 to
the scale of this figure). The inset shows the deformation potential
spectral density of GaAs [Eq. (16)].

tion of phonon-assisted transitions, but does not describe
pure dephasing®®?! in the diagonal basis. Pure dephasing is
an intrinisically non-Markovian process® that can be inter-
preted as a partial “which-way measurement” of the qubit by
the environment, thus causing decoherence.”* However, it
can be adiabatically eliminated if system dynamics proceeds
no faster than at a characteristic time scale of the order of
1 ps.36:10

The calculation of the spectral density J(w) requires a
microscopic model for the carrier wave functions. The
precise wave function shape is not important®® so we
proceed by using ground state solutions to a harmonic con-
finement potential of strength 162 meV at 2.5 nm from the
center of the dot:?® g, (r)=(d,\m) "> exp(—r2/2d§/h), for
which d,,=(h/\m,,c)"?> and ¢=8.3%1072J/m? For
GaAs,?%?' D,=14.6 eV, D,=4.8 eV, wu=53g/cm?, and
c,=4.8 X 10° cm/s. The effective electron and hole masses
are m,=0.067m and m;,=0.34m,. Assuming a linear phonon
dispersion wq=cs|q , the spectral density then takes a super-
Ohmic form (shown in the inset of Fig. 5)

D2w3< 2,2 Dh 2, 2 D2 2, 2
Jw) = == | e @70 = 2P0 4 —Lem0 | (16
(@) 2uc’ D D’ (16)

N e e

The exponential cutoff terms on the right-hand side of Eq.
(16) are related to the finite size of the QD, and filter out
high frequency phonons with wavelengths too short to inter-
act with the dot. The cutoff frequencies are w,;,=1\2c,/d,,,
and w,,=2¢,/ \/d3+d%.

By examining the structure of Egs. (14) and (16), we con-
clude that the influence of phonon-induced decoherence be-
comes small as A approaches zero, and can be exponentially
suppressed for values of A beyond the spectral cutoff w,,.
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Outside the ultrafast regime, only the first route of decreas-
ing A via Q lends itself to the dynamic scheme, but this is
contrary to the requirement of avoiding radiative decay. On
the other hand, operation beyond the cutoff is realizable for
an adiabatic gate with a large enough detuning. Using the
purity of the system’s density matrix, tr p*], to characterize
system decoherence, Fig. 5 shows that phonon decoherence
can, indeed, be overcome with the adiabatic approach and
that, in general, performance improves as the detuning
increases.?’

V. LANDAU-ZENER TRANSITIONS

Landau-Zener (LZ) transitions are nonadiabatic transi-
tions between eigenstates approaching an anticrossing;?® they
are a source of error in the adiabatic scheme since they cause
population to transfer to excited states, subjecting it to fast
decoherence during and after the gate. LZ transitions can be
suppressed by using longer gating times. Contrary to the
adiabaticity conditions derived in Refs. 3 and 4, which are
only valid for a linear sweep through resonance, we take a
more general approach.

To derive an adiabaticity condition, consider the 2LS
Hamiltonian (1). The transformation to the basis of instanta-
neous eigenstates,

cos @ —sin @
, (17)

sin 6

U(0)=<

cos 6

is time dependent. The Hamiltonian transforms as

H=U'HU+i(4U"U, yielding
H=N|= Y= |+ N+ )+ ]|+ 03i|- Y+ | +He), (18)

where N"=1/2(A*=VA?+Q?) denote the instantaneous
eigenenergies of the states |—) and |+). The off-diagonal
terms give rise to LZ transitions, which are, therefore, sup-
pressed if

|6 < \F=\7. (19)
Using Eq. (4) for 6, we obtain a general condition for adia-
baticity:

M <1 (20)

2(A2 + 92)3/2 :

For Q=0 exp[—(¢/7)?*] and constant A, we deduce that in-
equality (20) can be satisfied by demanding

QOy/A? < 71, (21)

Adiabatic following is, therefore, always achieved in the
limit A <<A, where 7<A over a broad range of parameter
space.

VI. OVERALL GATE FIDELITY

In order to bring together the results so far, we now cal-
culate the fidelity of the R () gate with a combined ME
describing both spontaneous photon emission and phonon-
induced processes. The gate is performed on the input state
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FIG. 6. (Color online) Comparison of the dynamic versus the
adiabatic gate for an R,() operation by showing the overall gate
fidelity. Left: Fidelity of the dynamic operation as a function of the
coupling strength (). Right: Fidelity of the adiabatic operation for a
fixed y=1 meV as a function of the detuning.

lih,y=(|0Y+[1))/+2 and ideally produces |i_)=(|0)—|1))/2
as its output state. The fidelity is defined as F=(y_|p|¢_),
where p is the density matrix of the system after the gate has
finished. Again, we use the material parameters of GaAs and
assume a radiative decay rate of I'j=0.01 ps~'.

The left panel of Fig. 6 shows the fidelity of the dynamic
gate as a function of () for different temperatures. Toward
small values of (), the fidelity is limited by the finite exci-
tonic lifetime, whereas phonon-induced processes become
important for larger values of (). The highest fidelity here is
below 0.95 at absolute zero, and decreases at finite tempera-
tures. For much higher values of ) beyond the phonon spec-
tral cutoff (~10 meV), we would expect the fidelity to im-
prove rapidly, neglecting the effects of pure dephasing.
However, as outlined above, our approach is not suited to
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studying the regime of ultrafast driving, and we refrain from
showing actual values at large ().

The fidelity of the adiabatic gate as a function of A for a
fixed value of {}y=1 meV is shown in the right panel of Fig.
6. Toward larger values of A, F increases and asymptotically
approaches unity as radiative decay is more effectively sup-
pressed. Phonon-induced processes are temperature depen-
dent and predominantly occur for small values of A. The
intermediate peak visible at higher temperatures is related to
the dip in the spectral density of the deformation potential
(see inset of Fig. 5).

VII. CONCLUSIONS

We have performed a comprehensive Markovian decoher-
ence study of an exciton-mediated spin phase gate in quan-
tum dots. Within an adiabatic scheme, all principal sources
of decoherence can be effectively suppressed in the same
limit of weak off-resonant laser driving, and a phase gate
fidelity of 0.999 or better may be possible even at finite
temperature. In contrast, for similar driving amplitudes, a
dynamic gate with typical operating parameters suffers
strong decoherence that leads to somewhat lower gate fidel-

1ty.
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